Common Lisp Quick Reference

Compiled by W. Burger, WS 95/96

1 Symbols

nil
Constant, whose value is itself (NIL).
t
Constant, whose value is itself (T).
(symbolp e)
Returns T if e evaluates to a symbol, otherwise NIL.
(boundp e)
Returns T if the value of e (which must be a symbol) has neither a global nor a local value.
(defvar sym e)
Defines sym to be a global variable with initial value e.
(defparameter sym e)
Defines sym to be a global parameter whose value (initial e) will may change at runtime but is
not, expected to.
(defconstant sym e)
Defines sym to be a global constant whose value (e) will not change while the program is running.

2 Value Assignment

(setf place e)
Stores the value of e in the place specified by place.
(setq sym e)
Evaluates e and makes it the value of the symbol sym; the value of e is returned.

3 Input/Output

(read [stream])
Reads the printed representation of a single object from stream (which defaults to
*standard-input*), builds a corresponding object, and returns the object.

(read-line [stream eof-error-p eof-value recursive-p]l)
Reads a line of text terminated by a newline or end-of-file character from stream (which
defaults to *standard-input*) and returns two values: the line as a character string and a
Boolean value, T if the line was terminated by an end-of-file and NIL if it was terminated by
a newline.

(read-char [stream eof-error-p eof-value recursive-p]l)
Reads one character from stream (which defaults to *standard-input*), and returns the corre-
sponding character object.

(read-char-no-hang [stream eof-error-p eof-value recursive-p])
Reads and returns a character from stream (which defaults to *standard-input*) if one is im-
mediately available, otherwise immediately returns NIL.

(read-byte binary-stream Leof-error-p eof-value recursive-p])
Reads one byte from the binary input stream binary-stream returns it in the form of an integer.

(read-from-string string [eof-error-p eof-value recursive-p :start start :end end
:preserve-whitespace preserve-whitespace])
Reads and returns an expression, taking input from string. A second value returned indicates
the index of the first character in string not read.

(prinl e [stream])
Prints a readable representation of e to stream (which defaults to *standard-output*).



(print e [stream])
Prints a readable representation of e to stream (which defaults to *standard-output*), at the
beginning of a new line.

(format stream control-string [e; ... er])
Writes formatted output to stream using control-string and arguments e; ...ex. If the value of
Argstream is T the output goes to *standard-output* and format returns NIL. If the value of
Argstream is T the output goes to a new string which is returned.

(fresh-line [stream])
Outputs a newline to stream (which defaults to *standard-output*) unless the stream is not
already at the start of a line.

(write-char char [stream])
Outputs char onto stream and returns char.

(write-byte integer binary-stream)
Writes one byte, the value of integer, onto binary-stream.

(with-open-file (stream-var filename options) e ... ey)
Sets up an input (default) or output stream to the named file. It then evaluates ey, ..., with
stream-var bound to the open stream and finally closes the file.

(load filename)
Loads the (Lisp) file with the name given by the string filename into the Lisp environment.

4 Lists
(list [er ... erl)
Creates a list containing elements ey, ..., eg.

(cons e Ist)
Creates a list with e as the first element and Ist as the rest.
(make-list size)
Creates and returns a list containing size elements each of which is initialized to NIL (other options
available).
(length Ist)
Returns the number of (top-level) elements of the list Ist. May fail on circular lists.
(list-length Ist)
Returns the number of (top-level) elements of the list Ist. Returns NIL on circular lists.
(listp Ist)
Returns T if Ist is a list (even when Ist is empty).
(first Ist)
Returns the first element of the list Is¢ (NIL if Ist is empty); equivalent to car.
(second Ist)
Returns the second element of the list Ist.
(rest Ist)
Returns a list containing all exept the first element of the list Ist (NIL if the length of Ist is less
than 2); equivalent to cdr.
(nth n Ist)
Returns the element at the n-th position of the list Ist (the first list element has positon 0). NIL
is returned if n is outside the list.
(last Ist [n])
Returns a list that contains the lastn (default is 1) elements of Ist (NIL if /st is empty).
(butlast Ist)
Returns a copy of the list Ist with the last element removed.
(append Isty Ista ... Isty)
Returns a list that is the concatenation of lists Isty, Ista, ..., lIst.
(member item lst)
Returns true (actually the tail of Ist beginning with the first matching element) if item occurs
anywhere at the top level in Ist.
(remove item Ist)
Returns a list similar to Ist with all elements eql to item removed. remove is non-destructive;
additional options are available.
(copy-list Ist)
Returns a top-level copy of Ist.



(subseq Ist start [end])
Creates a new list using values from Ist. If start evaluates to 0 and end is not given, then the
whole list is copied.
(reverse Ist)
Returns a new list with the same values as those in the value of Ist but in reverse order.
(push item place)
Inserts item at the beginning of the list stored at place and stores the resulting list back at place.
(pop place)
Returns the first of the list stored at place and stores the rest back in place.

5 Predicates

(atom e)
Returns T if e evaluates to an atom and NIL otherwise. Thus atom is T if the value of e is not a
cons.
(null e)
Returns T if e evaluates to NIL; otherwise returns NIL.
(consp Ist)
Returns T if Ist is a true list (i.e., a non-empty list, called a “cons”).
(endp Ist)
Returns T if the value of Ist is NIL, and NIL if it is some non-empty list.
(typep object type)
Returns T if the value of object is of type type, NIL otherwise.

6 Testing for Equality

(eq e1 e2)
Returns T if and only if e; and es are the same object (same address). Efficient test for the
equality of two symbols, but not useful for testing the equality of lists, numbers, or other Lisp
objects. Things that print the same are not necessarily eq, numbers with the same value need
not be eq, and two similar lists are usually not eq.

(eql er €s)
Returns T if e; and e are eq, or if they are numbers of the same type with the same value, or if
they are character objects that represent the same character.

(equal e; e3)
Returns T when e; and es are structurally similar. A rough rule of thumb is that objects are
equal when their printed representation is the same. equal is case sensitive when comparing
strings and characters.

(equalp e; e2)
Returns T if e; and e are equal; if they are characters and satisfy char-equal; if they are numbers
with the same numeric value (even if they are of different types); or if they have components that
are all equalp. Special rules apply to arrays, hash tables, and structures (see the full Common
Lisp specification).

7 Arithmetic

(+ ny ny ... ng)

Returns ny + ns ...+ ng.
(— ny ns ... nk)

Returns ny —ns ... — nyg.
(* ny ny ... ng)

Returns ny *xna ... * ng.
(/ ny ny ... nk)

Returns (... (n1/n2) ... /ng).

(incf place [deltal
Adds delta (which defaults to 1) to the value stored at place and stores the new value in the same
location.



(dect place [deltal
Subtracts delta (which defaults to 1) from the value stored at place and stores the new value in
the same location.

(max ny [ne ... ngl)
Returns the maximum value of its arguments.
(min n1 [ne ... ngl)

Returns the minimum value of its arguments.
(mod number divisor)
Returns number modulo divisor.
(rem number divisor)
Returns the remainder of number divided by divisor. The result has the same sign as divisor.
(signum n)
Returns 1 if the value of n is positive, 0 if the value is zero, and —1 if the value is negative. The
result has the same type as n.
(abs n)
Returns the absolute value of n.
(ceiling n)
Returns the smallest integer that is not smaller than the value of n.
(floor n)
Returns the largest integer that is not larger than the value of n.
(sqrt n)
Returns the principal square root of the value of n.
(exp n)
Returns e”.
(expt base n)
Returns base™.
(log n [basel)
Returns the logarithm base base (which defaults to e) of n.

(cos n)

Returns the cosine of n (given in radians).
(sin n)

Returns the sine of n (given in radians).
(tan n)

Returns the tangent of n (given in radians).
(acos n)

Returns the arc cosine (in radians) of n.
(asin n)

Returns the arc sine (in radians) of n.
(atan n)

Returns the arc tangent of (in radians) n.
(float n)

Returns the value of n as a floating point number.
(truncate n)
Returns the integer having the largest absolute value that is not larger than the absolute value of
n. Thus truncate truncates toward zero.
(round n)
Returns the integer closest to the value of n.
(random n)
Returns a random number between 0 (inclusive) and the value of n (exclusive). The type returned
is the same as that of n (integer or floating point).
pi
A constant whose value is the floating-point approximation of .

8 Comparisons and Predicates on Numbers

(=n1 ... ng)

Returns T if all the arguments are numerically equal; otherwise returns NIL.
(/=n1 ... ng)

Returns T if the arguments are all different; otherwise returns NIL.



(< nt ... ’nk)
Returns true if each argument is less than the one following it; otherwise returns nil.
(k= ny ... ng)
Returns true if each argument is less or equal than the one following it; otherwise returns nil.
> ng ... ng)
Returns T if each argument is greater than the one following it; otherwise returns NIL.
(>= ny ... nk)
Returns T if each argument is greater or equal than the one following it; otherwise returns NIL.
(zerop n)
Returns T if the number n is zero (either the integer zero, a floating-point zero, or a complex
zero); otherwise returns NIL. (zerop -0.0) is always true.
(minusp n)
Returns T if the number n is strictly greater than zero; otherwise returns NIL.
(minusp n)
Returns T if the number n is strictly less than zero; otherwise returns NIL.
(numberp e)
Returns T if e evaluates to any Common Lisp number.

9 Logical Functions

(and [e; ... erl)
Evaluates each argument e; sequentially. If and reaches an argument that returns NIL, it returns
NIL without evaluating any more arguments. If it reaches the last argument, it returns that
argument’s value.

(or [eg ... exl)
Evaluates each argument e; sequentially. If or reaches an argument that is not NIL, it returns the
value of that argument without evaluating any more arguments. If it reaches the last argument,
it returns that argument’s value.

(not e)
Returns T if the value of e is NIL; otherwise returns NIL.

10 Block Constructs

(progn [e; ... eyl)
Evaluates e; through e, and returns the value of e,,.
(progl e; [es ... en)
Evaluates e; through e, and returns the value of e;.
(let (luby ... lwbr) e1 ... ey)
Sets up local variable bindings [vb,, ..., lvby, evaluates e; through e,, and returns the value of e,
(implicit progn).
(letx (lwby ... lwby) e1 ... ep)
Sets up local variable bindings lvby, ..., lvb; sequentially. Otherwise same as let.

11 Conditional Constructs

(if test e; e3)

Evaluates test and, if not NIL, evaluates e;. Otherwise, es is evaluated. e; can be omitted.
(when test e1 ... eyp)

Evaluates test and, if not NIL, evaluates e; through e,. The value of e, is returned (implicit

progn).
(unless test e; ... e,)
Evaluates test and, if NIL, evaluates e; through e,. The value of e,, is returned (implicit progn).
(cond (test; e11 ... e1n) ... (testy ex1 ... €rn))
Evaluates testy, ..., testy until test; evaluates to something non-NIL, then evaluates e;, ..., €)
as an implicit progn.
(case keyform (key, e11 ... e1n) ... (key, ep1 ... €xn))

Evaluates keyform, then evaluates as an implicit progn the forms e;; whose keys key; match the



value of keyform. Returns the last form evaluated. keyform is evaluated, but the keys are not.
case permits a final case, otherwise or t, that handles all keys not otherwise covered.

12 TIteration Constructs

(dolist (war Ist [result]) e1 ... ep)
Evaluates e; ...ep for each element in the list Ist. The variable var is bound to the current list
element value. Finally, if specified, result is evaluated and returned.

(dotimes (war count [result]l) e, ... ey)
Evaluates e; ...e; count-times. The variable var is bound to the current iteration value, starting
with O up to count — 1. Finally, if specified, result is evaluated and returned.

(mapcar fun arglst; L[arglst, ... arglst,])
Applies fun to the successive elements of the argument lists arglst; and returns a list of the results.
If there are k argument lists, then fun should be a function of k& arguments.

13 Function Definition

(defun name (a1 ... ap) €1 ... ep)
Defines a named function with arguments a; ...a; and body e; ...e,. Note: Additional options
are available for specifying the arguments!

(lambda (aj ... ap) e1 ... ey)
Defines a local function with arguments a; . ..ay and body ey ...e,. Note: Additional options are
available for specifying the arguments!

(function fn)
Returns the functional object associated with fn. If fn is a symbol, its functional definition is
returned. If fn is a lambda-expression, then function returns a “lexical closure”.

14 Evaluation-Related

(apply function [ay ... ai] arglist)
Applies the value of function to the list of all arguments — either arglist if no a; are given, or the
list of a; ...ay with arglist appended to it.

(eval e)
First evaluates e and then evaluates the resulting value again.
(funcall function ay ... ag)

Applies the value of function (a function object) to the arguments a ... ag.

(quote e)
quote simply returns its argument without evaluating it. This allows any Lisp object to be written
as a constant value in a program. (quote z) can be abbreviated as ’z.

15 Miscellaneous

(time e)
Evaluates e and also outputs system-dependent timing information.
(trace function, ... function;)

Enables runtime tracing of the named functions (function; need not to be quoted!).
(untrace function, ... function;)
Disables runtime tracing of the named functions (function; need not to be quoted!). If no functions
are given, tracing is turned off for all functions.
(lisp-implementation-version)
Returns a string that identifies the version of the particular Common Lisp implementation.
(sleep n)
Causes execution to be suspended for approximately n seconds. Returns NIL.



